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A triazine core for a new class of Sharpless asymmetric
dihydroxylation ligands
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Abstract—Sharpless asymmetric dihydroxylation ligands were synthesized using a triazine spacer group in two, high yielding steps
from cheap, readily available starting materials. The ligands, gave good enantioselectivities in the asymmetric dihydroxylation of
alkenes and may provide a very economic alternative to current systems.
� 2004 Elsevier Ltd. All rights reserved.
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Figure 1. Range of ligands with different heterocyclic spacer groups

used in the asymmetric dihydroxylation of alkenes.
The catalytic asymmetric dihydroxylation of alkenes
with osmium tetroxide in the presence of bis-cinchona
alkaloid derivatives (1–3, Fig. 1) has provided a remark-
able tool by which a range of optically pure diols can be
easily obtained in high yields and with excellent enantio-
selectivities.1,2 The synthesis of a range of analogues,
using a number of heterocyclic spacer groups between
the two chiral moieties (four different possible alkaloid
moieties are used: quinine 4 and its pseudoenantiomer
quinidine 6 and their dihydro analogues hydroquinine
5 and hydroquinidine 7), has afforded a set of ligands
capable of performing the transformation across a
broad range of alkene substrates (Fig. 1).2–4

Herein, the synthesis of a new ligand with a triazine
spacer group between the two chiral moieties (9,
Scheme 1) is reported. Compound 9 was synthesized in
two, high yielding steps from inexpensive, readily
available starting materials; 4-bromoaniline, cyanuric
chloride and quinine as shown in Scheme 1.5 Such
construction allows for broad diversification of the
ligand, with the availability of many aniline and amine
derivatives for the first reaction. Thus 4-bromoaniline
was dissolved in acetone/water (1:1) and added to a
suspension of cyanuric chloride in a crushed ice/acetone
mixture (1:1) to give 8. Following drying under vacuum,
the mono-substituted triazine was dissolved in dry THF
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and added to the anion of quinine, generated in situ with
NaH to afford 9 in 98% isolated overall yield.

Results for the asymmetric dihydroxylation of several
alkenes, using K3Fe(CN)6 as a secondary oxidant are
shown in Table 1 with the results obtained for Sharpless�
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Table 2. Enantioselective dihydroxylation of alkenes catalyzed by the

triazine catalysts with different alkaloid moieties attached

Alkene 2-(4-Bromophenyl(amino))-1,3,5-triazine

core ee (%)

QN HQN HQD QD

93 94 86 92

64 64 64 74

26 24 29 22

Table 1. Enantioselective dihydroxylation of alkenes mediated with

triazine 9

R

R

R

R

HO

OH

10 mol% 9, OsO4,
K3FeCN6/K2CO3, MeSO2NH2,

tBuOH/H2O (1:1), 0 °C, 14 h

Alkene Yield (%) ee (%)a Sharplessb

1 75 >99 >99

2
CO2Me

Quant >99 97c

3 78 93 97

4 85 64 94

5 90 26 42

Experimental conditions: 0.6mmol alkene, 9lmol OsO4, 1.8mmol

K3FeCN6, 1.8mmol K2CO3, 0.6mmol MeSO2NH2 and 0.06mmol

chiral triazine catalyst.
a ee was determined by RP-HPLC on a Chiralpak AD-RH column,

using 20% MeCN/H2O as solvent with a flow rate of 0.5mL/min.
bSee Ref. 1b.
c Value reported for the ethyl ester.
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Scheme 1. Synthesizes of tri-substituted triazine 9.
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phthalazine ligand (1, Fig. 1), added for comparison. It
was immediately evident that the catalyst was most
selective for trans-substituted alkenes, which all gave
greater than 90% ee (unoptimized). For two alkenes
the catalyst was found to be comparable to those re-
ported for the Sharpless derivative (Table 1, entries 1
and 2), while for other alkene geometries, lower ee�s
were observed, similar to the pyrimidine ligand (3, Fig.
1)4 where the ee achieved for a-methyl styrene and ind-
ene were only 69% and 35% (Table 1, entries 4 and 5),
respectively, suggesting that the 1,3 and 1,4 relationship
between the chiral moieties is important (Fig. 1).

In order to ascertain if any differences in ee would occur
as a result of the incorporation of the different chiral lig-
ands (HQN, QD, HQD), the synthesis of the three ana-
logues of 9 was undertaken in a manner similar to that
shown in Scheme 1.

Table 2 shows the ee�s achieved by catalysis with the dif-
ferent alkaloid moieties with conditions similar to those
described in Table 1. Overall no significant differences in
ee for the different ligands were observed, suggesting
that diols of both configurations are achievable.

Since the triazine moiety contains three sites, which can
be substituted it was considered interesting to investigate
the catalytic activity of the C-3 symmetric ligand, which
was synthesized in a manner similar to that for 9, in 66%
yield from cyanuric chloride and 3.1equiv of quinine.
This had a disastrous result on the catalytic activity;
ee�s dropped from 94% to 76%, 64% to 42% and 24%
to 2% for b-methyl styrene, a-methyl styrene and ind-
ene, respectively. This supports previous observations6

that the presence of a binding pocket for the alkene is
crucial for high enantioselectivities. It appears that the
aniline moiety is necessary for the construction of such
a pocket, hence the function of the third component is
not merely as a steric block.

In summary a novel Sharpless-type asymmetric dihydr-
oxylation ligand with a triazine core was synthesized
in two, easy, high yielding steps from readily available
starting materials, and may offer an economic alterna-
tive to current systems. The catalyst was found to be ac-
tive in the asymmetric dihydroxylation of alkenes,
especially those of trans-geometry. As cyanuric chloride
can be easily and selectively reacted with a variety of
nucleophiles including thiols, phenols and Grignard rea-
gents,7 it could therefore serve as an extremely useful
spacer group to further extend the scope of the asym-
metric dihydroxylation reaction.
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